• 真人在线(中国)集团有限公司-官网

    位置:首頁 > 產品展示 > 行走虛擬現實系統

    產品展示

    產品展示

    可穿戴行走虛擬現實系統

    產品型號:ErgoLAB VR-MMES

    類   型:

    虛擬現實系統

    描   述:

    可穿戴行走虛擬現實系統由真人在线科技自主研發的ErgoLAB虛擬世界人機環境同步平台、美國WorldViz頭戴式行走虛擬現實系統等核心部件組成。在進行人機環境或者人類行為研究時結合虛擬現實技術,基於三維虛擬現實環境變化的情況下實時同步採集人-機-環境定量數據(如眼動、腦波、呼吸、心律、脈搏、皮電、皮溫、心電、肌電、肢體動作、關節角度、人體壓力、拉力、握力、捏力、振動、噪聲、光照、大氣壓力、溫濕度等物理環境數據)並進行分析評價,定量結果為科學研究做客觀數據支撐。

    諮詢報價 預約體驗

    可穿戴行走虛擬現實系統由真人在线科技自主研發的ErgoLAB虛擬世界人機環境同步平台、美國WorldViz頭戴式行走虛擬現實系統等核心部件組成,人機環境同步平台由虛擬現實同步模塊、可穿戴生理記錄模塊、VR眼動追蹤模塊、可穿戴腦電測量模塊、交互行為觀察模塊、生物力學測量模塊、環境測量模塊等組成。實現在進行人機環境或者人類心理行為研究時結合虛擬現實技術,基於三維虛擬現實環境變化的情況下實時同步採集人-機-環境定量數據(包括如眼動、腦波、呼吸、心律、脈搏、皮電、皮溫、心電、肌電、肢體動作、關節角度、人體壓力、拉力、握力、捏力、振動、噪聲、光照、大氣壓力、溫濕度等物理環境數據)並進行分析評價,所獲取的定量結果為科學研究做客觀數據支撐。

     

    可穿戴行走虛擬現實系統是一套沉浸感更強、交互體驗更佳的完全浸入式虛擬現實解決方案。可穿戴行走虛擬現實系統最大的特點就是系統部署簡單便捷,極大的提高了虛擬現實應用的靈活性。用小巧輕便的頭盔取代傳統的大屏顯示,不再局限於用戶場地的大小,擺脫外界環境的束縛。可穿戴虛擬現實頭盔(Head Mount Display,簡稱HMD)是一種頭戴式虛擬現實顯示設備。通過頭部佩戴的方式,全方位覆蓋體驗者視角,營造出更加身臨其境的沉浸效果。同時,輔以6自由度的頭部位置跟蹤和全身動作捕捉設備,通過對體驗者視點位置的捕捉,使頭盔顯示內容進行相應的改變,應用於單人及多人協同體驗中,提升交互感和體驗感。使用者佩戴上虛擬現實頭盔,全角度覆蓋體驗視角,使虛擬和現實的界限融為一體。

     

    作為該套系統方案的核心數據同步採集與分析平台,ErgoLAB人機環境同步平台不僅支持虛擬現實環境,也支持基於真實世界的戶外現場研究、以及基於實驗室基礎研究的實驗室研究,可以在任意的實驗環境下採集多元數據並進行定量評價。(人機環境同步平台含虛擬現實同步模塊、可穿戴生理記錄模塊、虛擬現實眼動追蹤模塊、可穿戴腦電測量模塊、交互行為觀察模塊、生物力學測量模塊、環境測量模塊等組成)

     

    作為該套系統方案的核心虛擬現實軟件引擎,WorldViz不僅支持虛擬現實頭盔,還可為用戶提供優質的應用內容。結合行走運動追蹤系統、虛擬人機交互系統,使用者最終完成與虛擬場景及內容的互動交互操作。

     

    應用領域

    BIM環境行為研究虛擬仿真實驗室解決方案:建築感性設計、環境行為、室內設計、人居環境研究等;

     

    交互設計虛擬仿真實驗室解決方案:虛擬規劃、虛擬設計、虛擬裝配、虛擬評審、虛擬訓練、設備狀態可視化等;

     

    軍工國防武器裝備人機環境虛擬仿真實驗室解決方案:武器裝備人機環境系統工程研究以及軍事心理學應用,軍事訓練、軍事教育、作戰指揮、武器研製與開發等;

     

    用戶體驗與可用性研究虛擬仿真實驗室方案:遊戲體驗、體驗類運動項目、影視類娛樂、多人參與的娛樂項目。

     

    虛擬購物消費行為研究實驗室方案

     

    安全人機與不安全行為虛擬仿真實驗室方案

     

    駕駛行為虛擬仿真實驗室方案

     

    人因工程與作業研究虛擬仿真實驗室方案

     

     

    其用戶遍佈各個應用領域,包括教育和心理、培訓、建築設計、軍事航天、醫療、娛樂、圖形建模等。同時該產品在認知相關的科研領域更具競爭力,在歐美和國內高等學府和研究機構擁有五百個以上用。

    1)、加州大學聖巴巴拉分校虛擬環境與行為研究中心

    該實驗室主要致力於心理認知相關的科學研究,包括社會心理學、視覺、空間認知等,並有大量論文在國際知名刊物發表,具體詳見論文列表。

    2)、邁阿密大學心理與計算機科學實驗室

    研究領域:空間認知

    Human Spatial Cognition In his research Professor David Waller investigates how people learn and mentally represent spatial information about their environment. Wearing a head-mounted display and carrying a laptop-based dual pipe image generator in a backpack, users can wirelessly walk through extremely large computer generated virtual environments.

    Research Project Examples Specificity of Spatial Memories When people learn about the locations of objects in a scene, what information gets represented in memory? For example, do people only remember what they saw, or do they commit more abstract information to memory? In two projects, we address these questions by examining how well people recognize perspectives of a scene that are similar but not identical to the views that they have learned. In a third project, we examine the reference frames that are used to code spatial information in memory. In a fourth project, we investigate whether the biases that people have in their memory for pictures also occur when they remember three-dimensional scenes.

    Nonvisual Egocentric Spatial Updating When we walk through the environment, we realize that the objects we pass do not cease to exist just because they are out of sight (e.g. behind us). We stay oriented in this way because we spatially update (i.e., keep track of changes in our position and orientation relative to the environment.)

    網站連結 http://www.users.muohio.edu/wallerda/spacelab/spacelabproject.html

     

    3)、加拿大滑鐵盧大學心理系

    設備: WorldViz Vizard 3D software toolkit, WorldViz PPT H8 optical inertial hybrid wide-area tracking system, NVIS nVisor SX head-mounted display, Arrington Eye Tracker

    研究領域:行為科學

    Professor Colin Ellard about his research: I am interested in how the organization and appearance of natural and built spaces affects movement, wayfinding, emotion and physiology. My approach to these questions is strongly multidisciplinary and is informed by collaborations with architects, artists, planners, and health professionals. Current studies include investigations of the psychology of residential design, wayfinding at the urban scale, restorative effects of exposure to natural settings, and comparative studies of defensive responses. My research methods include both field investigations and studies of human behavior in immersive virtual environments.

    網站連結  http://www.psychology.uwaterloo.ca/people/faculty/cellard/index.html  http://virtualpsych.uwaterloo.ca/research.htm http://www.colinellard.com/

     

    部分發表論文: Colin Ellard (2009). Where am I? Why we can find our way to the Moon but get lost in the mall. Toronto: Harper Collins Canada.

    Journal Articles: Colin Ellard and Lori Wagar (2008). Plasticity of the association between visual space and action space in a blind-walking task. Perception, 37(7), 1044-1053.

    Colin Ellard and Meghan Eller (2009). Spatial cognition in the gerbil: Computing optimal escape routes from visual threats. Animal Cognition, 12(2), 333-345.

    Posters: Kevin Barton and Colin Ellard (2009). Finding your way: The influence of global spatial intelligibility and field-of-view on a wayfinding task. Poster session presented at the 9th annual meeting of the Vision Sciences Society, Naples, FL. (Link To Poster)

    Brian Garrison and Colin Ellard (2009). The connection effect in the disconnect between peripersonal and extrapersonal space. Poster session presented at the 9th annual meeting of the Vision Sciences Society, Naples, FL. (Link To Poster)

     

    4)、美國史丹福大學信息學院虛擬人交互實驗室

    設備: WorldViz Vizard 3D software toolkit, WorldViz PPT X8 optical inertial hybrid wide-area tracking system, NVIS nVisor SX head-mounted display, Complete Characters avatar package

    The mission of the Virtual Human Interaction Lab is to understand the dynamics and implications of interactions among people in immersive virtual reality simulations (VR), and other forms of human digital representations in media, communication systems, and games. Researchers in the lab are most concerned with understanding the social interaction that occurs within the confines of VR, and the majority of our work is centered on using empirical, behavioral science methodologies to explore people as they interact in these digital worlds. However, oftentimes it is necessary to develop new gesture tracking systems, three-dimensional modeling techniques, or agent-behavior algorithms in order to answer these basic social questions. Consequently, we also engage in research geared towards developing new ways to produce these VR simulations.

    Our research programs tend to fall under one of three larger questions:

          1. What new social issues arise from the use of immersive VR communication systems?

          2. How can VR be used as a basic research tool to study the nuances of face-to-face interaction?

          3. How can VR be applied to improve everyday life, such as legal practices, and communications systems.

     

    網站連結: http://vhil.stanford.edu/

     

    5)、加州大學聖迭戈分校神經科學實驗室

    設備: WorldViz Vizard 3D software toolkit, WorldViz PPT X8 optical inertial hybrid wide-area tracking system, NVIS nVisor SX head-mounted display

    The long-range objective of the laboratory is to better understand the neural bases of human sensorimotor control and learning. Our approach is to analyze normal motor control and learning processes, and the nature of the breakdown in those processes in patients with selective failure of specific sensory or motor systems of the brain. Toward this end, we have developed novel methods of imaging and graphic analysis of spatiotemporal patterns inherent in digital records of movement trajectories. We monitor movements of the limbs, body, head, and eyes, both in real environments and in 3D multimodal, immersive virtual environments, and recently have added synchronous recording of high-definition EEG. One domain of our studies is Parkinson's disease. Our studies have been dissecting out those elements of sensorimotor processing which may be most impaired in Parkinsonism, and those elements that may most crucially depend upon basal ganglia function and cannot be compensated for by other brain systems. Since skilled movement and learning may be considered opposite sides of the same coin, we also are investigating learning in Parkinson’s disease: how Parkinson’s patients learn to adapt their movements in altered sensorimotor environments; how their eye-hand coordination changes over the course of learning sequences; and how their neural dynamics are altered when learning to make decisions based on reward. Finally, we are examining the ability of drug versus deep brain stimulation therapies to ameliorate deficits in these functions.

    網站連結: http://inc2.ucsd.edu/poizner/index.html

    論文列表: http://inc2.ucsd.edu/poizner/publications.html 

    方案特點

    1、沉浸感強烈 體驗效果更進一步

    使用者佩戴虛擬現實頭盔顯示器,完全置身於虛擬場景中,效果遠超傳統投影設備。

    2、自主研發 基於虛擬現實技術的人機環境定量評價為科研提供客觀數據支撐

    自主研發的ErgoLAB人機環境同步平台,VR同步模塊基於沉浸式三維虛擬現實環境,實時同步採集多元數據並進行定量評價,客觀的定量統計分析結果對科學研究提供數據支撐。

    3、完全自然狀態下的行走虛擬現實技術進行人類行為研究採集數據進行定量分析更真實。

    整個實驗室空間均為行走虛擬現實系統的實驗場地,被試可以不受任何限制自由行走,模擬完全真實世界的行為,採集的數據更真實。

    3、系統成本低,布署簡單。

    訂購請留言

    您需要:

    • 獲取產品資料
    • 獲取解決方案
    • 設備預約體驗
    • 實驗室規劃設計
    • 制定招標參數

    姓名:

    電話:

    郵箱:

    學院院系/企業名稱:

    研究方向:

    經費預算:

    • 50萬以內
    • 100萬以內
    • 200萬以內
    • 300萬以內
    • 500萬以內
    • 1000萬以內
    • 2000萬以內
    • 5000萬以內
    • 不限
    推薦產品

    QQ客服:

     4008113950

    服務熱線:

     4008113950

    公司郵箱:Kingfar@qfdv.cn

    微信聯繫:

     13021282218

    微信公眾號